Home Data-Driven Thinking Analysts Won The America’s Cup (And Other Lessons In Data ‘Steerage’)

Analysts Won The America’s Cup (And Other Lessons In Data ‘Steerage’)

SHARE:

laurenmoores“Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Today’s column is written by Lauren Moores, vice president of analytics at Dstillery.

Big data is one of those wonderful concepts meant to make life easier and business more efficient.

But in practice, before we get to any of its promised benefits, it makes everything more challenging. We have so much data to work with that we don’t know which questions to ask, much less which to answer.

And herein lies the issue. If you cannot discern which data is meaningful and what queries to apply, you can construct all the algorithms in the world to drive programmatic decision-making, but the results will be less than satisfactory. There is no simple solution to this conundrum, but there are ways to steer your data in the right direction. The key lies in data relevance.

I look at big data in the context of my personal experience and how today’s data compares to yesterday’s. When I was creating economic forecasts for various industry sectors, we used time series data, drawn from many years at monthly intervals. Processed on big Honeywell machines, accessed through TI thermal paper terminals, we used a proprietary language to build metadata for use in analyses.

Fast forward to the early online bubble. We used multiple data sources to achieve volume and scale of data that enabled us to rank and use only the quality monthly data in our company information products. Megabytes became gigabytes, and soon, if you weren’t working with terabytes of real-time data for weekly and monthly decision-making, you were missing consumer behavior signals. Today, terabytes and petabytes are the norm but, more importantly, real-time decision-making is also the standard practice.

Data And The America’s Cup

Think about it. “Wanted: Ability to handle large amounts of data streaming in real time; ability to create patterns from thousands upon thousands of parameters; ability to build agile algorithms to handle data programmatically.”

Many of us reading this want ad would think it was just another search for a data scientist at an advertising or media firm. However, having moved from academia to finance to advertising, I have observed the building of programmatic solutions using big data become the “in” strategy for all industries.

The want ad above is a hypothetical description for the America’s Cup AC72 analyst role. Sailing aficionados may focus on the AC72 design – lacking a true hull, outfitted with a 130 wing sail, use of carbon fiber and titanium and built to hydrofoil – but data geeks everywhere are talking about the data that went into this victory. With more analysts than sailors, programmatic big data analyses allowed the US team to make minor adjustments and tweaks in real time and gain the critical advantage needed to defend a trophy that New Zealand appeared to have already won.

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

In all of my experience with big data in a variety of industries, the key is to understand which data is relevant and which is not. Real-time decision-making fails when the data produces noise rather than signal. The old expression, “garbage in, garbage out,” holds here.

In the world of advertising, it’s particularly challenging. We have so much data about prospective customers that it’s difficult to determine which are relevant to our targeting, modeling and CRM efforts. Furthermore, we rightly endeavor to create multichannel and multiscreen advertising, but each campaign and screen requires different targeting criteria, with different data-based success metrics to measure success.

With all of this complexity, how can marketing leaders use data to help make better decisions about their businesses? What’s the best way to organize and align data with business objectives to determine strengths and weaknesses, and to plot strategy?

There’s no easy answer. There is, however, constantly evolving and improving technology to help decode the data and make the process simpler. Using the right technology platforms to help untangle the massive and unruly web of data is the best first step. As with the America’s Cup analysts, it’s all about understanding the goals and mapping the relevant data back to them. If you’re confident in your business objectives and KPIs (winning the race) and conscious of your obstacles (wind, currents, competitors), it’s easier to determine which data is relevant.

“Wanted: Ability to handle large amounts of data streaming in real time; ability to create patterns from thousands upon thousands of parameters; ability to build agile algorithms to handle data programmatically.”

For marketers, the search is over.

Follow Lauren Moores (@lolomoo) and AdExchanger (@adexchanger) on Twitter.

Must Read

Comic: Gamechanger (Google lost the DOJ's search antitrust case)

The DOJ And Google Sharpen Their Remedy Proposals As The Two Sides Prepare For Closing Arguments

The phrase “caution is key” has become a totem of the new age in US antitrust regulation. It was cited this week by both the DOJ and Google in support of opposing views on a possible divestiture of Google’s sell-side ad exchange.

create a network of points with nodes and connections, plain white background; use variations of green and grey for the dots and the connctions; 85% empty space

Alt Identity Provider ID5 Buys TrueData, Marking Its First-Ever Acquisition

ID5 bought TrueData mainly to tackle what ID5 CEO Mathieu Roche calls the “massive fragmentation” of digital identity, which is a problem on the user side and the provider side.

CTV Manufacturers Have A New Tool For Catching Spoofed Devices

The IAB Tech Lab’s new device attestation feature for its Open Measurement SDK provides a scaled way for original device manufacturers to confirm that ad impressions are associated with real devices.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters
Comic: "Deal ID, please."

The Trade Desk And PubMatic Are Done Pretending Deal IDs Work

The Trade Desk and PubMatic announced a new API-based integration for managing deal ID campaigns built atop TTD’s Price Discovery and Provisioning (PDP) API, which was announced earlier this year.

How Agentic Advertising Platform Aimy Uses Comcast’s Universal Ads API

On Monday, Brand Networks announced that Universal Ads would now be buyable through the company’s agentic ad buying platform, Aimy Ads.

Uber Launches A Platform-Specific Attention Metric With Adelaide And Kantar

Uber Advertising, in partnership with Adelaide and Kantar, launched a first-of-its-type custom attention metric score for its platform advertisers.