Home Ad Exchange News Google Leans On Machine Learning And Scale For Smarter Display Ads

Google Leans On Machine Learning And Scale For Smarter Display Ads

SHARE:

Google rolled out a machine learning-powered display product called Smart display campaigns on Thursday. The product is now generally available to all advertisers buying native, image or text ads across the Google Display Network (GDN).

Smart display campaigns are accessible via AdWords and reach more than 3 million GDN sites and apps on GDN now.

Beta testers like hotel search platform trivago have seen conversions increase an average of 20% across the board compared to standard display campaigns priced at the same CPA.

In its Smart display campaigns, which increased conversions 36%, trivago uploaded creative targeting different demos, set its price, budget and bid goals, and then Smart Display automatically generated 25,000 custom ads catering to the needs of different consumer targets.

Google claims Smart display uses machine learning to improve ad decisioning. While that capability isn’t new, Google argues it differentiates with pure scale.

“The opportunity here is to personalize ads based on what a user has previously done and deliver them in real time,” said Brad Bender, VP of product management for Google. “We update AdWords audiences in real time so when a consumer hits mute on an ad, for instance, we learn what they don’t like automatically and feed that into our machine learning.”

Within GDN, millions of signals make up each targeting and bid decision, so machine learning is vital for Google to wrangle it all. 

Although Google leveraged large-scale machine learning for certain products like Automated Insights, that was largely limited to analytics.

“We heard from advertisers that they wanted it to be easier to sort through multiple targeting options, create multiple versions of their ad or do complex calculations to figure out what right bid to set,” Bender said. “Over time, we’d developed a number of tools to make this easier, like auto-adapting a creative to fit every screen size or applied machine learning to automate bidding.”

But Google’s goal is to bring these media and creative capabilities together in a single workflow while ramping up its use of machine learning in ads.

“Machine learning and artificial intelligence are really at the heart of what we’re doing at Google, which you’re seeing play out in analytics, Google Assistant, Maps, and it’s certainly relevant for ads, too,” Bender said.

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

Google said that AI concepts like machine learning are part of its entire organization’s ethos.

Google AI initiatives include projects like DeepMind, Alpha Go and A.I. Experiments, its open-source library for machine-learning applications.

“If there’s a model that gets built in another part of the business, we’re able to bring it in and see how it does in our organization since we have a back end that allows us to test different models,” Bender said.

Easier said than done, but from an advertiser’s perspective, Google’s goal is to strike a balance between  simplicity and performance.

“They just log in, upload their assets and set their campaign parameters,” Bender said, “and we make the determinations to help them get to the outcomes they want.”

Must Read

Google Rolls Out Chatbot Agents For Marketers

Google on Wednesday announced the full availability of its new agentic AI tools, called Ads Advisor and Analytics Advisor.

Amazon Ads Is All In On Simplicity

“We just constantly hear how complex it is right now,” Kelly MacLean, Amazon Ads VP of engineering, science and product, tells AdExchanger. “So that’s really where we we’ve anchored a lot on hearing their feedback, [and] figuring out how we can drive even more simplicity.”

Betrayal, business, deal, greeting, competition concept. Lie deception and corporate dishonesty illustration. Businessmen leaders entrepreneurs making agreement holding concealing knives behind backs.

How PubMatic Countered A Big DSP’s Spending Dip In Q3 (And Our Theory On Who It Was)

In July, PubMatic saw a temporary drop in ad spend from a “large” unnamed DSP partner, which contributed to Q3 revenue of $68 million, a 5% YOY decline.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters

Paramount Skydance Merged Its Business – Now It’s Ready To Merge Its Tech Stack

Paramount Skydance, which officially turns 100 days old this week, released its first post-merger quarterly earnings report on Monday.

Hand Wipes Glasses illustration

EssilorLuxottica Leans Into AI To Avoid Ad Waste

AI is bringing accountability to ad tech’s murky middle, helping brands like EssilorLuxottica cut out bots, bad bids and wasted spend before a single impression runs.

The Arena Group's Stephanie Mazzamaro (left) chats with ad tech consultant Addy Atienza at AdMonsters' Sell Side Summit Austin.

For Publishers, AI Gives Monetizable Data Insight But Takes Away Traffic

Traffic-starved publishers are hopeful that their long-undervalued audience data will fuel advertising’s automated future – if only they can finally wrest control of the industry narrative away from ad tech middlemen.