Home One Question Regarding Misconceptions About Data For Ad Targeting

Regarding Misconceptions About Data For Ad Targeting

SHARE:

One QuestionJason Lynn is Chief Strategy Officer of interclick, an online advertising company.

Lynn is responding to Hooman Radfar of Clearspring who authored a One Question piece recently – “What Is The Biggest Misconception About The Use Of Data For Ad Targeting?“…

Leaders in the data targeting business uttered a collective ‘Amen’ to Hooman Radfar’s assertion that many data types and sources have to be considered for any marketing campaign.

Mr. Radfar’s comments address a common misconception in the industry.  Too often, marketers approach their online data in the exact same manner that they do offline data yet these data sets are fundamentally unique and should be treated as such.   It’s a familiar scenario – a marketer insists on a specific audience strategy based on an offline segmentation model.   Consequently, the campaign results show no lift over campaigns which do not use data, leading the marketers to conclude that “data doesn’t work.” There are few instances where data minimally benefits a campaign; however, nine times out of ten, the problem is improper selection of the audience data or an inappropriate audience selection process which stems from “traditional” marketing analytic practices.

“Traditional” marketing analytics focus on accurately describing consumers and ”success audiences” such as users who engaged with an ad, watched a video to completion, made a purchase, etc.   These analytics concentrate on what engaged consumers look like, and technically serve as a classification exercise.   In contrast, the selection of targeting data answers a question of prediction.  It addresses which data will make creative and media more effective and how will an audience respond to certain types of targeting.

On a technical level, classification and prediction are extremely similar, which can be confusing.  In most cases, the algorithms used to address both are the exactly same, but from a process standpoint, classification and prediction are different and should be articulated separately.  Marketers should have descriptive insights about their consumers and an audience targeting portfolio with predictive values.  This is a deliberate separation of correlation and causation.  Without an explicit prediction, it’s extremely difficult to choose the data which will improve the effectiveness of a campaign and correctly value it.

Some brand marketers will say this mainly applies to direct response campaigns.  This is only the case if you conduct campaigns without any measurement whatsoever.  Data can and should be used leveraged in branding, and given that campaigns can leverage prediction on any level within the purchase funnel –  attention, interest, desire, or action – it should be viewed as another tool, rather than a niche solution.

Overall, handling online data is very challenging and requires new approaches to realize its full value.  While there are many unique lessons to learn about online data, one lasting standard remains true: “make the model fit the data, not the data fit the model.”

Follow interclick (@interclick) and AdExchanger.com (@adexchanger.com) on Twitter.

Must Read

Google Rolls Out Chatbot Agents For Marketers

Google on Wednesday announced the full availability of its new agentic AI tools, called Ads Advisor and Analytics Advisor.

Amazon Ads Is All In On Simplicity

“We just constantly hear how complex it is right now,” Kelly MacLean, Amazon Ads VP of engineering, science and product, tells AdExchanger. “So that’s really where we we’ve anchored a lot on hearing their feedback, [and] figuring out how we can drive even more simplicity.”

Betrayal, business, deal, greeting, competition concept. Lie deception and corporate dishonesty illustration. Businessmen leaders entrepreneurs making agreement holding concealing knives behind backs.

How PubMatic Countered A Big DSP’s Spending Dip In Q3 (And Our Theory On Who It Was)

In July, PubMatic saw a temporary drop in ad spend from a “large” unnamed DSP partner, which contributed to Q3 revenue of $68 million, a 5% YOY decline.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters

Paramount Skydance Merged Its Business – Now It’s Ready To Merge Its Tech Stack

Paramount Skydance, which officially turns 100 days old this week, released its first post-merger quarterly earnings report on Monday.

Hand Wipes Glasses illustration

EssilorLuxottica Leans Into AI To Avoid Ad Waste

AI is bringing accountability to ad tech’s murky middle, helping brands like EssilorLuxottica cut out bots, bad bids and wasted spend before a single impression runs.

The Arena Group's Stephanie Mazzamaro (left) chats with ad tech consultant Addy Atienza at AdMonsters' Sell Side Summit Austin.

For Publishers, AI Gives Monetizable Data Insight But Takes Away Traffic

Traffic-starved publishers are hopeful that their long-undervalued audience data will fuel advertising’s automated future – if only they can finally wrest control of the industry narrative away from ad tech middlemen.