Home Data-Driven Thinking Google’s Data-Driven Attribution Model Isn’t Perfect, But It Is Progress

Google’s Data-Driven Attribution Model Isn’t Perfect, But It Is Progress

SHARE:
Dmitri Kazanski, Head Of Product, North America, MGID

Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Today’s column is written by Dmitri Kazanski, head of product for North America at MGID.

Last click is the most commonly used attribution. Why? Because it’s very simple – but it’s also clearly flawed.

A user’s path in the funnel is affected by multiple touch points, including the ad impressions that are seen or heard and not clicked. Assigning all the credit to the last click is as good as assigning all the credit for one’s fitness level to one’s last workout.

I bet you can’t remember the last time you clicked a Geico ad. But if you live in the US, you can easily fill in the blanks in the following sentence: “A 15-minute call could save you 15% or more on ___  ____________.”

The next time you need car insurance, more likely than not, you’ll type “Geico” into your browser, after which you might click the first link you see: an AdWords link. The insurance quote you’re given will be counted as a lead by Geico, but here’s an important question: Does the ad you clicked deserve full credit for the lead?

Google AdWords, which supports six attribution models, recently changed its default from last click to a complex model Google calls “data-driven attribution.” The name is rather unfortunate. All attribution models, including last click, are driven by data. Google might as well call it an “electricity-powered” attribution model.

In principle, the idea behind data-driven attribution sounds great. The example given by Google appears to indicate a model that correlates conversions to certain events, such as clicks on particular ads. The credit is then spread across the events that correlate the most with the conversions. 

Unfortunately, not much is known about how the model is built or how exactly it works. It’s a black box that might be powered by a regression or a neural net, among other things – who knows.

As someone who works with predictive modeling, I wonder if Google’s “data-driven attribution” model accounts for context and interactions.

In the example provided by Google, it’s possible that the ad for “Bike tour New York” might have a stronger correlation with conversions than “Bike tour Brooklyn waterfront” across all traffic. However, when the traffic comes from within the New York area, the more specific ads, such as “Bike tour Brooklyn waterfront,” might perform better. 

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

Secondly, the new default attribution model does not appear to explain how ad views that do not result in clicks count toward the attribution, if at all.

Google mentions “holdback experiments” as a way to calibrate the model and arrive at incrementality, which is encouraging. In my view, strictly controlled holdback experiments are the gold standard of attribution and incrementality measurement. This works as follows:

  • A certain percentage, say 10%, of the target audience is held back as a control. The users in the control group are not exposed to the ads.
  • After the campaign is complete, the advertiser shares its list of buyers with the provider.
  • Some of the participants in the control group will end up converting anyway. The difference in the percentage (and monetary value) of the conversions between the control group and the exposed group represents the true incrementality of the campaign.

In practice, this attribution study will be challenging to implement. Usually, it involves resolving the identities of both converted users and exposed users. Doing so presents obvious privacy-related challenges. Clearly, Google cannot do this type of study for every campaign, but at least such studies appear to be used for calibration.

The new default attribution solution should answer the question as to which of Google’s campaign components contributed to the most conversions. It won’t, however, answer the question of incrementality or the question of which components of advertisers’ overall spend produced the most conversions.

Still, it is a step in the right direction.

Follow MGID (@MGID) and AdExchanger (@adexchanger) on Twitter.

Must Read

A comic depicting Judge Leonie Brinkema's view of the her courtroom where the DOJ vs. Google ad tech antitrust trial is about to begin. (Comic: Court Is In Session)

Your Day One Recap: DOJ vs. Google Goes Deep Into The Ad Tech Weeds

It’s not often one gets to hear sworn witnesses in federal court explain the intricacies of header bidding under oath. But that’s what happened during the first day of the Google ad tech-focused antitrust case in Virginia on Monday.

Comic: What Else? (Google, Jedi Blue, Project Bernanke)

Project Cheat Sheet: A Rundown On All Of Google’s Secret Internal Projects, As Revealed By The DOJ

What do Hercule Poirot, Ben Bernanke, Star Wars and C.S. Lewis have in common? If you’re an ad tech nerd, you’ll know the answer immediately.

shopping cart

The Wonderful Brand Discusses Testing OOH And Online Snack Competition

Wonderful hadn’t done an out-of-home (OOH) marketing push in more than 15 years. That is, until a week ago, when it began a campaign across six major markets to promote its new no-shell pistachio packs.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters
Google filed a motion to exclude the testimony of any government witnesses who aren’t economists or antitrust experts during the upcoming ad tech antitrust trial starting on September 9.

Google Is Fighting To Keep Ad Tech Execs Off the Stand In Its Upcoming Antitrust Trial

Google doesn’t want AppNexus founder Brian O’Kelley – you know, the godfather of programmatic – to testify during its ad tech antitrust trial starting on September 9.

How HUMAN Uncovered A Scam Serving 2.5 Billion Ads Per Day To Piracy Sites

Publishers trafficking in pirated movies, TV shows and games sold programmatic ads alongside this stolen content, while using domain cloaking to obscure the “cashout sites” where the ads actually ran.

In 2019, Google moved to a first-price auction and also ceded its last look advantage in AdX, in part because it had to. Most exchanges had already moved to first price.

Thanks To The DOJ, We Now Know What Google Really Thought About Header Bidding

Starting last week and into this week, hundreds of court-filed documents have been unsealed in the lead-up to the Google ad tech antitrust trial – and it’s a bonanza.