Home Data-Driven Thinking Truth Vs. Religion: What Kind Of Data Company Are You?

Truth Vs. Religion: What Kind Of Data Company Are You?

SHARE:

Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Today’s column is written by Auren Hoffman, CEO at SafeGraph.

Startup data companies have to make a very important choice: What kind of company will they be?

I see four basic types of data companies, and all can be very successful, but the biggest mistake data companies make is that they try to do too much at a time.

First, let me define the x and y axis of the graphic below.

Note that all four quadrants are good; the upper right quadrant is not any better than lower left.

Truth Vs. Religion

Truth companies are backward looking. They tell you what happened, when something happened or information about a person or thing. The main objective of these companies is to have true data.

Examples of truth companies would be a credit bureau (such as Experian, Equifax and Transunion), middleware (LiveRamp, Segment, Improvado or mParticle) and financial services data firms (like large parts of Bloomberg). These companies are usually very long on data engineers.

In comparison, the main objective of religion companies is to accurately predict the future based on a set of data.

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

Good examples of religion companies would include those specializing in credit scores (such as FICO), fraud prevention (ThreatMetrix) and measurement (Nielsen or Market Track). These companies are usually long on data scientists and sometimes machine-learning engineers.

Data Vs. Application

Once they have a valuable set of proprietary data, startups have to choose if they will be a pure data company or if they will build an application on top of their data.

Data companies just sell data. The best way to identify a data company is if it has no UI or a very limited UI. Data companies sometimes sell directly to end buyers but often also sell to applications, which is why it is so important they do not become applications, as they do not want to compete with their customers.

Good examples of data companies are in financial services (such as Yodlee and Vantiv), a pure data co-op (Clearbit) and wealth predictions (Windfall Data).

Application companies make data sing. To really get benefit from data, you need an application. These companies will have nice UI and more front-end engineers.

Good examples are query layers (such as SecondMeasure), refined data co-ops (Verisk and Abacus), integration layers (Vantiv and Plaid) and B2B product usage (Siftery).

Series Beats Parallel

The biggest mistake data companies make is that they attack more than one quadrant at once. For the first $100 million in revenue, they should be focused on just one type of business.

Follow Auren Hoffman (@auren) and AdExchanger (@adexchanger) on Twitter.

Must Read

Critics Say The Trade Desk Is Forcing Kokai Adoption, But Apparently It’s Up To Agencies

Is TTD forcing agencies to adopt the new Kokai interface despite claims they can still use the interface of their choice? Here’s what we were able to find out.

Why Big Brand Price Increases Will Flatten Ad Budgets

Product prices and marketing budgets are flip sides of the same coin. But the phase-in effects of tariffs, combined with vicissitudes of global weather and commodity production, challenge that truism.

The IAB Tech Lab Isn’t Pulling Any Punches In The Fight Against AI Scraping

IAB Tech Lab CEO Anthony Katsur didn’t mince his words when declaring unauthorized generative AI scraping of publisher content “theft, full stop.”

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters
Comic: Gamechanger (Google lost the DOJ's search antitrust case)

Here’s Who’s Testifying During The Remedy Phase Of Google’s Ad Tech Antitrust Trial

Last week, the DOJ and Google filed their respective witness lists and the exhibit lists for the remedy phase of the ad tech antitrust trial. Lots of familiar faces!

MX8 Labs Launches With A Plan To Speed Up The Survey-Based Research Biz

What’s the point of a market research survey that could take weeks, when consumer sentiment is rollercoasting up and down every day? That’s the problem MX8 Labs aims to tackle.